Learning Structured Models with the AUC Loss and Its Generalizations
نویسندگان
چکیده
Many problems involve the prediction of multiple, possibly dependent labels. The structured output prediction framework builds predictors that take these dependencies into account and use them to improve accuracy. In many such tasks, performance is evaluated by the Area Under the ROC Curve (AUC). While a framework for optimizing the AUC loss for unstructured models exists, it does not naturally extend to structured models. In this work, we propose a representation and learning formulation for optimizing structured models over the AUC loss, show how our approach generalizes the unstructured case, and provide algorithms for solving the resulting inference and learning problems. We also explore several new variants of the AUC measure which naturally arise from our formulation. Finally, we empirically show the utility of our approach in several domains.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملModelling potential impacts of climate change on the oak spatial distribution (Case study: Ilam and Lorestan provinces)
Examining the effects of climate change on the oak spatial distribution, as the main species of Zagros forests and its ecological and economic values is of significant importance. Here, we used species distribution models for simulating current climatic suitability of oak and its potential changes in 2050 and 2070. For this purpose, five regression-based and machine learning approaches, four cl...
متن کاملSupplementary Material for: Learning Structured Models with the AUC Loss and Its Generalizations
We have shown that with our enhanced representation, the ranking problem for given weights w reduces to the one in Joachims (2005) in the case of a fully-factored model. Here we show a similar result for the learning problem. Recall that our learning objective is defined as: min w λ 2 w 2 + 1 M m max z∈Z w ϕ(x m , z) + ∆ AU C (z, y m) − maxˆz∈Zˆz∼y m w ϕ(x m , ˆ z) (1) We would like to consider...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملIncreasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014